Roland AG-5

Funny Cat

- Redrawn based on "moosapotamus's" tracing and schematic
- Shaded resistors are inside opamp modules, value not presently known - Capacitors with "+" polarity indication are polarized
- Capacitors marked "Tant" are tantalum - 22Jan03: corrected polarity of tantalum - 22Jan03: corrected polarity

Peculiarities

1. Module A circuit looks like a compressor but isn't. The loop gain is so high that the gain reduction loop overconpensates, and because the filtering cap is so small, it cuts a core out of the positive going side of the signal.
2. Transistor Q3 is a switched buffer. It buffers the dry signal when in non-SDS mode and the SDS output when in SDS mode. The guitar signal is always loaded with at least the 110 K of the first stage, and also the 470K of the Q3 stage.

Drawing copyright 2003 R.G. Keen. All rights reserved.

Drawing copyright 2003 R.G. Keen. All rights reserved.

Drawing copyright 2003 R.G. Keen. All rights reserved

Silly Feline PCB layout and wiring

Full size toner transfer pattern

The full sized PCB layout is shown at bottom left, and the parts stuffing diagram and wiring diagram is at left. Pots are show viewed from the back.

Note that the original Funny Cat was not a true bypass box. The input impedance of this effect will be in the 50 K region, enough to have treble loss when the SDS/Normal switch is in the "Normal" position. A true bypass around the whole thing might be a good addition.

In making the PCB, all holes except off-board wiring pads and the switch pads are drilled out to $0.028^{\prime \prime}$ to $0.032^{\prime \prime}$. The off-board wiring pads need to be about $0.040^{\prime \prime}$, and the switch pad holes need to be $0.060^{\prime \prime}$ to $0.062^{\prime \prime}$ to accommodate the pins of the specified switch.

Notice the square pads. Those are polarity designators. The square pads in the IC layout patterns signify pin 1. In the electrolytic caps, the square pad is the (+) pin. Only Q2A or Q2B are used, not both. Q2A is the original type number with pinout ECB for the Japanese "2SC" types, and Q2B is pinned out EBC for "2N" types. Use whichever type you can get, but put it in the correct footprint.

On the board layout, C6 and R9 are reversed in order from the schematic. This has no effect on the unit's operation.

R1	220 K		C10 0.01	The other usual stuff:
R2	220 K	R22 100K	C11 0.056	SPDT switch (SDS/N)
R3	470K	R23 12K	C12 0.022	DPDT stomp (s)
R4	22K	R25 47K	C13 0.022	Input and output jacks
R5	2.2 K	R26 22 K	C14 1uF	Box
R6	100K	R27 100	C15 100uF16V	battery clip
R7	220K	Rfba 470 K	C16 0.01	knobs
R8	1K	Rfbb 100K	C17 0.056	wire
R9	47K	Rfbc 100K	C18 0.01	solder
R10	47K	R28 1M	C19 47uF 16V	time
R11	1.2 K	C1 0.033		attention
R12	220 K	C2 1uF	SDS Level - 50K log	money...
R13	220K	C3 0.22tant	Balance - 50 K log	
R14	220K	C4 0.68 tant	All diodes 1N4148	
R15	22K	C5 0.01	U1, $2=$ dual opamp	
R16	22K	C6 1uF	Q1 2SK30A	
R17	22K	C7 1uF	Q2A 2SC828	
R18	6.8K	C8 1uF	Q2B 2N3904	
R19	470K	C9 1uF	Sw1 = 4P3T rotary M	\# \# 105-14574
R20	470K		(Lorlin nylon rotary sw	105-14574)

