MACKIE.

HR824

High Resolution
Active Studio Monitor

SERVICE MANUAL

CAUTION AVIS

RISK OF ELECTRIC SHOCK DO NOT OPEN
risque de choc electrique NE PAS OUVRIR

CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK DO NOT REMOVE THE COVER (OR BACK) NO USER SERVICEABLE PARTS INSIDE REFER SERVICING TO QUALIFIED PERSONNEL

WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS PRODUCT TO RAIN OR MOISTURE

TO PREVENT ELECTRIC SHOCK, DO NOT USE THIS POLARIZED PLUG WITH AN EXTENSION CORD, RECEPTACLE OR OTHER OUTLET UNLESS THE BLADES CAN BE FULLY INSERTED TO PREVENT blade exposure.

ATTENTION: POUR EVITER LES RISQUES DE CHOC ELECTRIQUE NE PAS ENLEVER LE COUVERCLE. AUCUN ENTRETIEN DE PIECES INTERIEURES PAR L'USAGER. CONFIER L'ENTRETIEN AU PERSONNEL QUALIFIE.

AVIS:POUR EVITER LES RISQUES D'INCENDIE OU D'ELECTROCUTION, N'EXPOSEZ PAS CET ARTICLE A LA pLUIE OU A L'HUMIDITE.

POUR PREVENIR LES CHOCS ELECTRIQUES NE PAS UTILISER CETTE FICHE POLARISEE AVEC UN PROLONGATEUR, UN PRISE DE COURANT OU UNE AUTRE SORTIE DE COURANT, SAUF SI LES LAMES PEUVENT ETRE INSEREES A FOND sANS LAISSER AUCUNE PARTIE A DECOUVERT.

This apparatus does not exceed the Class A/Class B (whichever is applicable) limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian Department of Communications.

ATTENTION :Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant las limites applicables aux appareils numériques de class A/de class B (selon le cas) prescrites dans le réglement sur le brouillage radioélectrique édicté par les ministere des communications du Canada.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio energy and, if not installed properly and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

The lightning flash with arrowhead symbol within an equilateral triangle is intended to alert the user to the presence of uninsulated dangerous voltage" within the product's enclosure, that may be of sufficient magnitude to constitute a risk of electric shock to persons.

Le symbole éclair avec point de flèche à l'intérieur d'un triangle équilatéral est utilisé pour alerter l'utilisateur de la présence à l'intérieur du coffret de "voltage dangereux" non isolé d'ampleur suffisante pour constituer un risque d'éléctrocution.

The exclamation point within an equilateral triangle is intended to alert the user of the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

Le point d'exclamation à l'intérieur d'un triangle équilatéral est employé pour alerter les utilisateurs de la présence d'instructions importantes pour le fonctionnement et l'entretien (service) dans le livret d'instruction accompagnant l'appareil.

CONTENTS

SHIPPING 3
INTRODUCTION 4
TECHNICAL SUPPORT 4
DISC LAIMER 4
OVERVIEW 5
REAR PANEL 6
FRONT PANEL 7
SPECIFICATIONS 8
BLOCK DIAG RAM 9
WIRING DIAGRAM 10
PACKAGING PARTS 11
QUICK PARTS 11-12
TEST PROCEDURES 13-19
PARTS LIST 21-25
IC AND TRANSISTOR CHARTS 25-26
FOLD-OUT SECTIONS:
SCHEMATICS A1-A 2
PRINTED CIRCUIT BOARDS REV A A3-A4
PRINTED CIRCUIT BOARDS REV B A5-A 6
FINAL ASSEMBLY A7-A13

Click on any item to open that page

SHIPPING

When shipping this speaker, make sure that all the original packaging is used, including both the inner and outer boxes, a nd especially the thin, white sheet material. If shipped in just one box or without the sheet material, the lovely finish can be damaged. Shipping damage due to improper packaging is not covered under Warranty! If you do not have the original packaging, it can be ordered from our parts department. Neveruse loose-fill foam pieces (pea nuts) as these can damage the finish and get inside the a mplifier section.

Mar Bron Bo HR824 SERVICE MANUAL

INTRODUCTION

This manual contains service information for the HR824 Powered Studio Monitor. It is recommended that you also have a copy of the owner's manual as this contains the complete operating instructions.

To service the HR824, technicians should be fa miliar with op-a mp based and discrete amplifier circ uitry, speaker repair a nd speaker performance testing. Presentation of this manual does not constitute endorsement of qualifications by Mackie Designs.
!SMD!
The HR824 makesextensive use of surface mount components. Servic e technicians should have the tools, experience and patience to perform surface mount rework.

PROTECT YOUR HEARING

The HR-824 speakers are capable of produc ing high sound pressure levels. We recommend the use of hearing protectors to prevent permanent hearing loss.

SERVICE TECHNICAL ASSISTANCE

Mackie Designs, Service Tec hnic al Assistance, is a va ilable 8AM - 5PM PST, Monda y through Friday forAuthorized Mackie Service Centers, at 1-800-258-6883. Feel free to call with any questions and speak with a carefully-calibrated technician. If one is not available, leave a detailed message and a qualified Mackoid will retum your call asap.

DISC LAIMER

The information contained in this manual is proprietary to Mackie Designs, Inc. The entire manual is protected under copyright and may not be reproduced by any means without express written pemission from Mackie Designs Inc.

HR824 OVERVIEW

- The HR824 Studio Monitors are two-way, bi-a mplified active monitors with a rearfiring passive radiator. One amplifier drives the woofer and another drives the tweeter.
- The crossover point is designed so that the high and low frequency drivers are fed only the frequenciesthey can bestreproduce.
- The amplifiers are designed with protection circuits to minimize the danger of speaker damage due to overdriving.
- The amplifiers' gain and frequency responses are individually hand-trimmed by a host of infemal adjustment pots to compensate fortypical manufacturing tolerances.
- The adjustments produce a smooth frequency response from 39 Hz to 20 kHz ($\pm 1.5 \mathrm{~dB}$) with minimal phase difference.

THE DRIVERS

- The monitorsfeature an 8.75 -inch die-cast magnesium frame woofer and a 1 -inch viscousedge-damped aluminum-alloy dome tweeter on the front, and a 6 -inch x 12-inch elliptical flat piston passive radiator in the back.
- The high-frequency driver is mounted on a die-c ast zinc exponential wa veguide which results in wide, controlled dispersion of high-frequency sounds. The unique passive radiator design provides a smooth response down to 39 Hz .

THE CABINET

- The cabinet is made of high-density MDF wood from specially grown MDF trees. An intemal " H " brace further inc reases the strength and rigidity (stiffness) of the box. An open-cell adiabatic pillow foam material gently fills the inside of the box to absorb intemal reflections and da mpen a ny standing waves.

THE AMPLIFIERS

- The Fast Recovery a mplifier design uses low negative feedback, yet allows the amplifiers to maintain low distortion and stability even when driven into clipping.
- The low-frequenc y a mplifierproducesup to 150 watts continuous (350 watts peak) before clipping, while the high-frequency amplifier produces up to 100 watts continuous (210 watts peak).

THE PASSIVE RADIATOR

- The HR824 is a bass reflex6th-ordersystem, rotating in geo-synchronous orbit. Rather than use ports, the vent takes the form of a passive radiator, a mass-loaded flat piston coupled to the air trapped within the enclosure. The passive radiator is located at the rearof the cabinet, behind the power a mplifier assembly.
- One primary advantage oversimple porting is that a passive radiatorcan reproduce low frequencies with lower distortion and at a highersound pressure level(SPL).
- The unique passive radiatordesign usesa diaphragm made with a composite honeycomb material providing exceptional stiffness to the radiating surface.
- The elliptical shape of the passive radiator takesup nea rly the entire surface area available on the rear of the enclosure, allowing the passive radiator to move more air than Congress. This moving a ir also helpscool the amplifier.

REAR PANEL DESCRIPTION

SIG NALINPUTS

- The XLR female and TRSfemale connectors are connected in parallel.
- Both input connectors accept balanced or unbalanced signals. They are wired as follows (per the AES/IEC standard):

Hot (+)
Cold (-)
Shield (Ground) Pin 1 Shield

INPUTSENSTTVITY CONTROL

- The HR824 expects a line-level signal at its input connectors.
- The reference sensitivity is $-7.5 \mathrm{dBu}=100 \mathrm{~dB}$ SPL at one meter (39 inches) with the INPUT SENSITIVITY control set to its NORMAL position.
- The HR824 is designed to operate with a +4 dBu signal when the INPUTSENSTIVITY control is in the NORMAL position.

ACOUSTIC SPACESWICH

This is a three-way switch that adjusts the low-frequency response of the speakersto compensate fortheir placement in the room.

- If you place the monitors against a wall (half space), set the ACOUSTIC SPACE switch to the " B " position. This a ctivates a shelving filterto reduce the low-frequency output by 2 dB to compensate for the bass boost from half-space placement.
- If you place the monitors into the comers of your room (quarter space), the lowfrequency output approximately doubles from what it is in half space. Set the ACOUSTIC SPACE switch to the "A" position to reduce the low-frequency output by 4 dB to compensate for the bass boost.
- If you use the HR824s free-sta nding, a way from walls and comers (whole space), set the ACOUSTIC SPACE switc h to the " C " position (NORMAL).

LOW FREQ SWITC H

- The LOW FREQ switch inserts a steep lowfrequency rolloff into the response curve.
- For most applic ations, use the 47 Hz setting.
- If you want orneed the extra low-frequency capability, use the 37 Hz (NORMAL) position.
- You can use the 80 Hz position to simulate a sma ller loudspea ker.

HIG H FREQ SWITCH

- The HIGH FREQ switch tailors the overall high-frequency response by $\pm 2 \mathrm{~dB}$ at 10 kHz .

POWER MODESWTCH

- In the OFF position, the power amplifiers are in Standby mode and produce no sound. Low-level circ uitry is still active, but the power consumption of the circuitry is minimal (8 watts).
- In the ON position, the power amplifiers are live and operate nomally. (The front panel ON/OFF switch must also be ON.)
- Since the power supply and low level circ uitry are already a ctive (assuming the speaker is plugged into a live outlet), this is an "instant on" function.
- In the AUTO ON position, the amplifiers tum on and off depending on the presence or absence of an input signal. An input signal level of -45 dBu (minimum) activates the a uto-on function. A silent period greater than five minutes activates the auto-off function. The red PWR LED on the front panel reflects the state of the a mplifiers.
- Normally, use the front panel switch to tum the monitors on and off.
- If you unplug the power when a signal is still applied to the input, you may hear sound from the monitor. This is a fter about 6 sec onds, when the muting circuit unmutes and the power supply finishes disc harging. This is normal and not harmful to the monitor.

MAINSINPUT

- Connect the power cord to this IEC socket, and plug the other end into your AC outlet.

IMPORTANT: For sa fety reasons, the AC source must be a "3-prong" outlet with hot, neutral, and ground terminals.
WARNING: Bypassing the plug'sground pin can be dangerous. Don't do it!

FRONT PANEL DESC RIPTION

ON/OFFSWITCH

- Use this switch to tum on or off the HR824 from the front. It works with the POWER MODE switch on the rearpanel in the following way:
- If the rearPOWER MODE switch is OFF, the front panel ON/OFF switch has no effect. The PWR LED remains off, so there.
- If the rearPOWER MODE switc h is $O N$, the front panel ON/OFF switch tums the HR824 on and off, as indic ated by the PWR LED.
- If the rear POWER MODE switch in the AUTO ON position, the front panel ON/OFF switch tums the HR824 on and off as long as there is a signal present.

OL (overload) LED

- This LED blinks when the a mplifiers begin to clip, and lights steadily if the overload protection circuit hasbeen triggered.
- Occasional blinking of the OL LED indic ates that the loudest transients a re reaching the maximum output capability of the amplifiers.
- Frequent or continuous blinking of the OL LED indic atesthat you have exceeded the maximum output capability of the a mplifiers and that the a mplifiers are clipping. If you persist, the overload protection circ uit takes over, reducing the input level. You should reduce the level from your signal source until the OL LED blinks occ asionally or not at all.

OVERLOAD PROTECTION

- The high and low frequency power a mplifiers have clipping detectors that light the OL LED when either power a mplifier output clips.
- If frequent clipping occurs, the driver themal overload protection activates a compressor that reduces the input level to the amplifiers. During this time the OL LED lights continuously.
- The compressorwasdesigned to protect the speakers and its action is highly audible.
- When listening at a very high volume, you may find that the OL LED lights frequently. Since the majority of the power requirements in any monitor are the low frequencies, selectively reduc ing the low end can provide a little more headroom
and volume for the monitors. Change the LOW FREQ switch to 47 Hz or 80 Hz , if necessary, to reduce the bassresponse. This may a llow the HR824s to play louder and eliminate most amplifier clipping.

THERMALPROTECTION

- The HR824 is designed to be effic ient both electric ally a nd thermally.
- If the heatsinks get too hot, a themal switch activates, placing the HR824 into Standby mode (indic ated when the red PWR LED tumsoff).
- Should this happen, make sure that aiflow to the rear of the cabinet is not restricted.
- When the heatsinks cool down to a safe temperature, the switch resets and nomal operation resumes.
- If your service customer compla ins that their HR824s keep themalling out, make sure they keep them in the vertical position for improved ventilation. Also make sure the biashasbeen set corectly.

SPECIFICATIONS

Amplifier Section

Low-frequency amplifier:
Rated power output: 150 watts, 4Ω load
Burst power output: 350 watts
Distortion: THD: $<0.035 \%$ SMPTE IMD: $\quad<0.035 \%$ DIM 100: $\quad<0.035 \%$
Slew Rate: $\quad>35 \mathrm{~V} / \mu \mathrm{s}$
Signal-to-Noise Ratio: $>102 \mathrm{~dB}$, referenced to
150 watts into a 4Ω load
High-frequency amplifier:
Rated power output: 100 watts, 6Ω load
Burst power output: 210 watts
Distortion: THD: $<0.035 \%$
SMPTE IMD: <0.035\%
DIM 100: $<0.035 \%$
Slew Rate: $\quad>35 \mathrm{~V} / \mu \mathrm{s}$
Signal-to-Noise Ratio: > 102 dB , referenced to 100 watts into a 6Ω load

Crossover Section
Crossover Type:
Modified Linkwitz-Riley, 24dB/octave @ 2kHz Input Impedance:
$20 \mathrm{k} \Omega$, balanced bridging
Compressor:
Independent high and low frequency overload detection

Acoustic Space Equalization:

A position: $-4 \mathrm{~dB} @ 100 \mathrm{~Hz}$, shelving
B position: -2 dB @ 100Hz, shelving
C position: flat
Low Freq Filter:
-3 dB @ 35Hz
$-3 d B @ 47 \mathrm{~Hz}$
-3 dB @ 80Hz
High Freq Equalization:
$\pm 2 \mathrm{~dB} @ 10 \mathrm{kHz}$, shelving

Transducers

Low-frequency driver:

8.75 -inch (222 mm) die-cast magnesium frame, mineral-filled polypropylene cone.

High-frequency driver:

1-inch (25.4 mm) viscous edge-damped aluminumalloy dome with ferrofluid-cooled voice coil.

Passive Radiator:

6 -inch x 12-inch ($152 \mathrm{~mm} \times 305 \mathrm{~mm}$) mass-loa ded elliptic al flat piston.

Ac oustic Section:

Free-Field Frequency Response:
$\pm 1.5 \mathrm{~dB}, 39 \mathrm{~Hz}$ to 20 kHz
Lower c utoff frequenc y: $\quad-3 \mathrm{~dB} @ 37 \mathrm{~Hz}$
Upper c utoff frequency: $\quad-3 \mathrm{~dB} @ 22 \mathrm{kHz}$
Sound Pressure Level at 1 meter,
-7.5dBu into balanced input 100 dB SPL @ 1m
Maximum shortterm SPLon axis,
half space $\mathbf{8 0 H z}$ to $\mathbf{2 . 5 k H z}$: $\quad 110 \mathrm{~dB}$ SPL @ 1 m
Residual noise (maximum gain, 600Ω source,
20Hz-20kHz bandwidth): <8dB SPL @ 1m
Maximum peak SPL per pair: 120 dB SPL @ 1m

Enc losure
Materials and Construction:
3/4- inch (19 mm) thick MDF construction with 1-inch (25.4 mm) thick MDF front panel. Proprietary die-cast zinc exponential wave guide for high-frequency driver. Open cell adiabatic "foam fill" acoustical damping material.

General:

Power Consumption:
135 watts with musical program, loud mix 18 watts quiesc ent (idle)
8 watts in Standby mode
AC DropoutVoltage:
120V AC versions: 80V AC
240 V AC versions: $\quad 160 \mathrm{~V}$ AC
Weight 33 lbs .10 oz (15.25 kg)
Dimensions (HxWxD):
$15.75^{\prime \prime}(400 \mathrm{~mm}) \times 10.00$ " $(254 \mathrm{~mm}) \times 12.20^{\prime \prime}$
(310mm)

Mackie Designs is always striving to improve our products by incomorating new and improved materials, components and manufac turing methods. Therefore, we reserve the right to change these specifications at any time without notice.

BLOCK DIAGRAM

Na $\sqrt{2}$ Bo HR824 SERVICE MANUAL

WIRING DIAGRAM

PACKAGING

Note: Use only the exact packaging shown here. Do not substitute any part or the speaker will be damaged.

1. Place speakerinside the packing foam bag.
2. Add cardboard collars.
3. Slide into inner box and secure shut.
4. Add comers and slide into outer boxand secure shut for shipping.

QUICK PARTS

Note: When ordering the woofer or tweeter, order the bucking magnet and the gaskets as well. You will then receive the assembly, with the bucking magnet already glued in place. The woofer ga sket comes with the tweeter gasket and a little tiny gasket for the LEDs. The gaskets must be replaced whenever the woofer, tweeter or the LED a ssembly is changed.

Narrer er HR824 SERVICE MANUAL

QUICK PARTS

TESTPROCEDURES

REQUIRED TESTS

The following pages conta in the test procedures for the amplifier section disc onnected from the woofer and tweeter. For minor repairs, there is no need to run through all tests but you MUST at least do the following:

- Adjust the bias, a nd check the rails and curent draw as shown below.
- Verify that both a mplifiers meet full power into resistive loads, as shown on page 19.
- Operate all the switc he a nd venify their effect.
- Manually (and gently) check the woofer for any sticking or rubbing in its travel.

NOTE:
The four adjustment pots VR2, VR3, VR5 and VR6 are set and glued at the Mackie Factory for optimum performance and should not be touched. The factory settings are made when the speaker is all assembled and itsoutput measured in an a nechoic chamber with a calibrated microphone. The setting of these potstakes into account manufacturing tolerances of the complete assembly, not just the a mplifier on its own.

TEST EQ UIPMENT

The amplifer performance must be tested into resistive loads: 4 ohm, 200 watt resistor for the low frequency amplifier 8 ohm, 200 watt resistor for the high frequency amplifier Otherequipment required:
Audio range sinewave generator, oscilloscope, dc millivolt/volt meter, Vms meter, THD meter.
NOTE: Take care as the amplifier will tum on using the rearpanel power switch even when the front panel switch is not connected.

INITIAL SIGNS OF HAPPINESS

- The a mplifier is on and cold, NO loads, NO input signal
- See the next page for the location of the test points

BIAS:

Measure the dc voltage across the two pins of J1, and adjust VR1 for a reading of 2.5 mV
Measure the dc voltage across the two pins of J 6, and adjust VR4 for a reading of 2.5 mV
Don't stop, there is more:
IMPORIANTNOTE: After the a mplifier has been on for 30 minutes and if the rails a nd current draw seem good (as shown below), set both bias volta ges to 9 mV (with no signal, no load).

RAILS:
Venify the various dc voltages are present, relative to ground (see the diagram on the nextpage):
$-56 \mathrm{~V},+56 \mathrm{~V},-49 \mathrm{~V},+49 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V}$.

CURRENTDRAW

The curent should be less than 200mA with no loads attached.

Nascrable HR824 SERVICE MANUAL

TEST POINTS

NOTE:
INSTEAD OF USING J1, YOU CAN MEASURE THE BIAS ACROSS THE EMITTER ENDS OF R22 AND R24 AS SHOWN.

CONNECTING THE LOADS

J 5 is your time portal vortex to another realm of audio excitement. If you have a suitable connector, then wire the test loads as shown on the right.

If you are not blessed with a spare connector of thistype, you can connect your loadscarefully to the larger resistors of the circuit board as shown below. Use crocodile (alligator) clips, or better still, use them little hook things.

Na SVI So HR824 SERVICE MANUAL

LOW FREQUENCY AMPUFIER TESTS

ACOUSTIC SPACESWICH
Disa ble the compressor circ uit by shorting together pins 1 and 2 of 12.
Tum off the amplifier and connect the two resistor loads as shown on the previous page.
Set all switc hes to the NORMAL position and tum on the amplifier.
Set your audio signal generator for an output of $300 \mathrm{mVms}(-10.46 \mathrm{dBV})$.
Measure the output into the 4 ohm load for the three positions of the ACOUSTIC SPACE switch. Do these measurementsfairly quickly bec ause the amplifier will be wa ming up.
The level of the output may be different from that shown, due to the factory settings of the calibration pots. Just make sure that the speaker under test followsthe overall shape and the switch is working.

THD
Measure the THD at 400 Hz and verify it is less than 0.1%

LOW FREQUENCY AMP TESTS continued

LOW FREQ SWITCHTEST
Set your audio signal generator for an output of $300 \mathrm{mVms}(-10.46 \mathrm{dBV})$ Set the Acoustic Space switch to position A (Quarter Space).
Measure the output into the 4 ohm load for the three positions of the LOW FREQ switch. Do these measurements fairly quic kly because the amplifier will be waming up.
The level of the output may be different from that shown, due to the factory settings of the calibration pots. Just make sure that the speaker under test follow the overall shapes and the switch is working.
NOTE: the graph of the 37 Hz position is the same as measured on the previous page (position A), so no need to repeat it, just do 47 Hz and 80 Hz .

Mr Brel Bo HR824 SERVICE MANUAL

HIGH FREQUENCY AMPLIFIER TESTS.

NORMALRESPONSETEST
Disable the compressor circ uit by shorting together pins 1 and 2 of J 12.
Set your a udio signal generator for an output of $300 \mathrm{mVms}(-10.46 \mathrm{dBV}$)
Set the ACOUSTIC SPACE, LOW FREQ a nd HIG H FREQ switc hesto NORMAL
Do these measurements fa irly quic kly because the amplifier will be wa ming up.
The level of the output may be different from that shown, due to the factory settings of the calibration pots. J ust make sure that the speaker undertest follows the overall shape and that the switch works as follows:

HIG H FREQ UENCY SWITC H TEST
Switch the HIGH FREQ switch to +2 dB and venify a 2 dB inc rease at 20 kHz .
Switch the HIGH FREQ switch to -2 db and venify a 2 dB decrease at 20 kHz .
THD
Measure the THD at 3 kHz and venify it is less than 0.1%

POWER TESTS

Disable the compressor circ uit by shorting together pins 1 and 2 of 12.
Set all of the switc hes to NORMAL a nd measure the output power of both a mplifiers into their respective load resistors.
Quic kly verify that the output power is a least as follows:
High Frequency a mplifier
75 Watts @ 3 kHz into 8 ohms (=24.5 Vms)
Low Frequencyamplifier
110 Watts @ 400 Hz into 4 ohms ($=21 \mathrm{Vms}$)
Quickly verify that both a mplifiers clip symmetric ally.
Verify that the OL (overload) LED tums on.
Remove the short from J 12 when finished.

WOOFER AND TWEETER TESTS

- Ca refully inspect the woofer and tweeter cones for any signs of da mage. The speakers do not have front grills, so a ny cosmetic damage should be easily indentifiable.
- Measure the dc resistance of each driverand verify nothing is shorted. The resistance should be around 6 ohms.
- Ca refully and gently check by ha nd that the woofer moves in a nd out without a ny rubbing or scraping of the voice coil.
- Connect the woofer a nd tweeter to the HR824 a mplifier.
- Conduct a listening test and play some low frequency (30 to 1 kHz) test to nes to verify the performance of the woofer driver.
- Sweep from 15 Hz to 110 Hz a nd listen carefully for a ny a ir leaks at front a nd back. Listen at any screw holes, at the power switch and the leds.
- Tighten any sc rews, or replace gaskets if required.
- Play some high frequency (2 kHz to 20 kHz) tones to check the tweeter. Listen for crystal clear highs, deep bass from two stories down, a nd the effervescent, detail-revealing openness so beloved by Hi-Fi gurus.

Servere ear/hearing da mage can be caused by continous exposure to high level sounds. Take every precaution to preserve yourhearing.

Nar Bral So HR824 SERVICE MANUAL

PARTS LIST

- When ordering the woofer ortweeter, you must order the bucking magnet as well. Then you will receive the assembly, with the bucking magnet already glued in place.
- Always order the woofergasket at the same time, because during disa ssembly, this ga sket can get tom. The tweeter gasket (and the small gasket for the LEDs) comes with the woofer gasket.
- Always use the inner box, the outer box and the thin white foam when shipping the HR824 and use all other means of safe-shipping protection. This will protect the finish from getting scuffed up or the woofers from being damaged.
- The assembly diagrams in the fold out sections of this manual also show the part numbers, so check there first foreasier parts identification.
- Pages 22-26 show all the parts of the PCB assembly, inc luding two charts of tra nsistor a nd IC information.

Parts Numbering guide

040- Cables
055- Finished PCB Assy
100- Pots and resistors
200- Capacitors
300- Semiconductors
400- Jacks/Connectors
500- Switches
510- Fuses
550- Chassis Metalwork
600- Transformers
601- Inductors
610- Wires and Cables
640- AC line cords
700- Hardware
760- Knobs/Plastic
770- Fans
790- Misc./Packing
800- Printed Material
860- EPROM

Final Assembly Parts

SAFETY CRITICAL PARTS, USE EXACTREPLACEMENT PARTS ONLY.

080-029-00
055-094-00
550-231-00
730-001-00
550-228-00
550-230-00
550-248-00
600-019-00
600-019-01
600-019-02
700-005-00
700-030-04
700-031-02
700-052-00
700-055-00
705-001-00
705-011-00
705-015-00
710-019-00
740-001-00
780-107-00
080-046-00
611-028-03
611-029-04
611-041-01
611-042-01
490-001-00
490-003-00
490-010-00
490-016-00
490-017-00
500-016-00
551-501-00
640-001-00
640-002-01
640-002-02
700-010-04
701-012-05
710-005-00
730-019-00
750-002-00
780-102-00
780-103-00
780-110-00
790-019-00
800-067-00
800-068-00
810-050-00
810-052-00
810-058-00
810-059-00
810-060-00
840-074-00

PASSIVE RADIATOR ASSEMBLY 1
PCB ASSEMBLY
HEATSINK BRACKET 2
THERMALJ OINTCOMPOUND
REARCOVER
1
INTERCONNECTBRACKET 1
XFMR PLATE (SPD W/XFMR)
XFMR HR824 120V
1
XFMR HR824 230V 1
XFMR HR824 100V 1
SEMS 8-32xl/ 2 PHP BLKZC 10
MCH 6-32X3/8 PHP BLKZC 2
MCH 6-32X3/8 BTNPIN BLKZC 2
MCH 10-32X2-1/4 PHP BLKZC 1
MCH 4-24X3/8 PHP BLK HILO 2 KEPNUT6-32
NUT, LOCK 10-32 1
NUTSLOTNCKL
WASH FIBRE BLK
TYRAP 3-1/4L
RUBBER WASHER 3.55 DIA 2
CABLE HARNESS ASSEMBLY 1
WIRE 18GA RED 39 INCH 1
WIRE 18G A BLACK 39 INCH 1
WIRE 18G WHITE 35 INCH 1
WIRE 18G BLUE 35 INCH 1
WO OFER 8.75 INCH 4 OHM 1
TWEETER 1 INCH 6 OHM 1
SPEAKER CABINET 1
BUC KING MAGNET, TWEETER 1
BUCKING MAGNET, WOOFER 1 SWITCH ROCKER SPST 6A/250V
CAST WAVE GUIDE
UNECORD IEC SJ T10A/125V 6FT 1
UNECORD, 230V 1
UNECORD, 100V 1
TF 6-32X3/8 PHP BLKZC 5
SCREW SM 8xl PAN TORX BLKOX 17
WASHER INTSTAR NO. 6 BLK 5
ACCELBLACKMAGIC 737
BUMPON FLTRND BLK.14H 4
GASKETFOR WAVEGUIDE 1 GASKETFOR WOOFER 1
GASKETFOR PASSIVE RADIATOR 1
P/FOAM 48X28X1/32 P/F SHT
BOXINNER - HR824
BOXOUTER - HR824 1
FOAM CABINETHR824 1
FOAM TWEETER HR824 1
INSTC ORNER - HR824 8
INST COLLAR - HR824 1
INST COLLAR 2 - HR824 1
LBLMACKIELOGO 3D 1
(ORDER ASA COMPLEIE ASSEMBLY)
(SEE PAGES 22-24 FOR THE DETAILS)
(DON'T USE ON THE TRANSISTORS WITH SIL-PADS)
(BOTTOM BRACKET)
120V UNITS
230V UNITS
100V UNITS
FOR REAR PANEL FITTING TO PCB ASSEMBLY
FORIEC CONNECTOR
2 FOR GROUND SCREWS
FOR TRANSFO RMER MOUNTING
FOR XLR
2 FOR IEC , 2 FOR GROUND SCREW
FOR TRANSFORMER SCREW
FOR PHONE ACK
FOR PHONEJACK
SEE ASSEMBLY DRAWINGS FOR LOCATIONS
FORTRANSFORMER MOUNTING
HARNESS ASSEMBLY WIRES
HARNESS ASSEMBLY WIRES
HARNESS ASSEMBLY WIRES
HARNESS ASSEMBLY WIRES

FRONT POWER SWITCH
FOR 120 V MODELS FOR 230 V MODELS
FOR 100 V MODELS

(4 TWEEIER SCREWS AND 1 FOR LED)
(9 WAVEGUIDE, 2 PASSIVE RAD, 6 REAR PANEL)
(4 TWEETER SC REWS AND 1 FOR LED)
(FOR FOAM)
(INC LUDES TWEETER AND LED GASKET)

PACKING FOAM "THE WHITE STUFF"

PC B Assy 055-094-00 Rev A and B (A/Bdifferences maked in bold pint)

 PART NO. DESCRIPTIONREFERENCE DESIGNATORS

040-127-00	DIS 22G A BLK 1C 2.SIN QD			
400-091-00	TERM ODISC . 187 F 18-22GA			
610-012-00	WIR 22GA 1007 BLK 2.5 ST2			
040-135-00	DIS 18G 1010 G RNYL 4 LGTM			
400-172-00	TERM SOLDER-IN 18AWG			
611-038-00	WIR 18GA 1010 G N/YL 4 ST2			
711-001-00	LUG NO. 6 SOLDER STAR			
110-065-00	RESISTOR CF, 1/4 WATT	4K7	5\%	R179
110-083-00	RESISTOR CF, 1/4 WATT	27K	5\%	R178
120-097-00	RESISTOR CF, 1/2 WATT	10K	5\%	R99
121-081-00	RESISTOR MF, 1WATT	2K2	5\%	R21 R130
123-001-00	RESISTOR MF, 3WATT	.10HM	5\%	R101
123-009-00	RESISTOR MOF, 3WATT	. 22	5\%	R22 R24 R166 R170
123-049-00	RESISTOR MOF, 3WATT	10	5\%	R64 R100
130-038-00	RES POTTRIM HORIZ	500-B		VR1 VR4
130-043-02	RESPOT9MM HORIZ	10KA		R184
130-044-00	RESPOTTRIM VERT	500-B		VR6 VR5 (REV A)
130-046-00	RESPOTTRIM VERT	1K		VR5 (REV B)
130-046-00	RESPOTTRIM VERT	1K		VR3
130-052-00	RESPOTTRIM VERT	50K		VR2
140-041-00	RESISTOR TF SMT	47	5\%	R146
140-053-00	RESISTOR TF SMT	150	5\%	R25 R40 R161 R173
140-057-00	RESISTOR TF SMT	220	5\%	R3 R9 R162 R175
140-060-00	RESISTOR TF SMT	300	5\%	R28 R37 R131 R133 R139
140-065-00	RESISTOR TF SMT	470	5\%	R77
140-070-00	RESISTOR TF SMT	750	5\%	R6 R90 R168
140-073-00	RESISTOR TF SMT	1K0	5\%	R122 R148-149
140-080-00	RESISTOR TF SMT	2K	5\%	R20
140-082-00	RESISTOR TF SMT	2K4	5\%	R19 R155
140-096-00	RESISTOR TF SMT	9K1	5\%	R15
140-097-00	RESISTOR TF SMT	10K	5\%	R123
140-104-00	RESISTOR TF SMT	20K	5\%	R126
140-109-00	RESISTOR TF SMT	30K	5\%	R1 R10 R160 R177
140-123-00	RESISTOR TF SMT	100K	5\%	R111 R116 R125
145-162-00	RESISTOR MF SMT	47R5	1\%	R29-30 R33-34 R59 R74 R79 R134-135 R140-141
145-193-00	RESISTOR MF SMT	100	1\%	R62-63 R158
145-204-00	RESISTOR MF SMT	130	1\%	R80
145-226-00	RESISTOR MF SMT	221	1\%	R157
145-239-00	RESISTOR MF SMT	301	1\%	R67 R71 R103-104
145-269-00	RESISTOR MF SMT	619	1\%	R32
145-285-00	RESISTOR MF SMT	909	1\%	R124
145-289-00	RESISTOR MF SMT	1K00	1\%	R35 R49 R95 R137
145-293-00	RESISTOR MF SMT	1K10	1\%	R118 R73 (REV A)
145-294-00	RESISTOR MF SMT	1K13	1\%	R96
145-300-00	RESISTOR MF SMT	1K30	1\%	R73 (REV B)
145-306-00	RESISTOR MF SMT	1K50	1\%	R75 R138
145-314-00	RESISTOR MF SMT	1K82	1\%	R14 R43 R47 R70 R102 R195
145-326-00	RESISTOR MF SMT	2K21	1\%	R5 R169
145-331-00	RESISTOR MF SMT	2K49	1\%	R11 R26-27 R39 R53 R119 R159 R164 R174 R176
145-338-00	RESISTOR MF SMT	2K94	1\%	R55 R97
145-339-00	RESISTOR MF SMT	3K01	1\%	R13
145-346-00	RESISTOR MF SMT	3K57	1\%	R94
145-354-00	RESISTOR MF SMT	4K32	1\%	R84

PART NO. DESC RIPTION
REFERENCE DESIGNATORS

145-358-00	RESISTOR MF SMT	4K75	1\%	R44-45 R66 R85 R87 R98 R121 R128 R185-186
145-361-00	RESISTOR MF SMT	5K11	1\%	R16-17 R60-61 R145
145-367-00	RESISTOR MF SMT	5K90	1\%	R57
145-381-00	RESISTOR MF SMT	8K25	1\%	R41 R51 R113
145-383-00	RESISTOR MF SMT	8K66	1\%	R193
145-389-00	RESISTOR MF SMT	10K0	1\%	R42 R86 R89 R91-92 R109 R115 R153 R183 R46 (REV A)
145-393-00	RESISTOR MF SMT	11K0	1\%	R190
145-397-00	RESISTOR MF SMT	12K1	1\%	R36 R52 R46 (REV B)
145-406-00	RESISTOR MF SMT	15K0	1\%	R18 R50 R78 R110 R112
145-409-00	RESISTOR MF SMT	16K2	1\%	R82
145-411-00	RESISTOR MF SMT	16K9	1\%	R187
145-414-00	RESISTOR MF SMT	18K2	1\%	R58
145-415-00	RESISTOR MF SMT	18K7	1\%	R188
145-418-00	RESISTOR MF SMT	20K0	1\%	R31 R38 R54 R56 R65 R68-69 R72 R106 R114 R120 R132 R136
145-422-00	RESISTOR MF SMT	22K1	1\%	R143 R151
145-424-00	RESISTOR MF SMT	23K2	1\%	R192
145-426-00	RESISTOR MF SMT	24K3	1\%	R129
145-435-00	RESISTOR MF SMT	30K1	1\%	R76
145-437-00	RESISTOR MF SMT	31K6	1\%	R189
145-439-00	RESISTOR MF SMT	33K2	1\%	R181
145-452-00	RESISTOR MF SMT	45K3	1\%	R194
145-454-00	RESISTOR MF SMT	47K5	1\%	R142 R144 R150 R180
145-472-00	RESISTOR MF SMT	73K2	1\%	R191
145-473-00	RESISTOR MF SMT	75K0	1\%	R83
145-479-00	RESISTOR MF SMT	86K6	1\%	R81
145-480-00	RESISTOR MF SMT	88K7	1\%	R117 R127
145-485-00	RESISTOR MF SMT	100K	1\%	R105 R152 R154
145-500-00	RESISTOR MF SMT	143K	1\%	R12
145-510-00	RESISTOR MF SMT	182K	1\%	R48
145-518-00	RESISTOR MF SMT	221K	1\%	R93 R147 R156
145-522-00	RESISTOR MF SMT	243K	1\%	R107
145-553-00	RESISTOR MF SMT	511K	1\%	R88 R108
145-581-00	RESISTOR MF SMT	1M0	1\%	R182
150-009-00	RES, FUSIBLE, 1/4W	2.2	5\%	R4 R7 R165 R171 FUSIBLE
150-037-00	RES, FUSIBLE, 1/4W	33	5\%	R2 R8 R163 R172 ! RESISTORS
150-045-00	RES, FUSIBLE, 1/4W	68	5\%	R23 R167 . RESL
200-023-00	CAP, POLY BOX, 250 V	.001uF	20\%	C81-82 PRIMARY CIRCUITCAPS
200-024-00	CAP, POLY BOX, 250 V	.01uF	20\%	C83 !
200-027-02	CAP MYLART\&R	. 1	5\%	C 2 C 15 C 24 C 44 C 47 C 50 C 66 C 68 C 85 C 97
200-028-02	CAP MYLAR T\&R	. 01	5\%	C 45-46 C64-65
200-037-02	CAP MYLART\&R	. 033	5\%	C48 C87
212-001-00	CAP CERAMIC SMT	. 01	10\%	C6 C 8-10 C 32 C 70 C 72 C 75-76 C101
212-003-00	CAP CERAMIC SMT	100P	5\%	C13C33
212-014-00	CAP CERAMIC SMT	180PF	5\%	C4C7C98C103
212-019-00	CAPCERAMIC SMT	150PF	5\%	C30 C54 C 110-111
212-020-00	CAPCERAMIC SMT	750PF		C 18 C 26 C 99 C 102
212-021-00	CAP CERAMIC SMT	27pF		C19 C88
212-023-00	CAPCERAMIC SMT	. 001	10\%	C 22 C 41-43 C 90
220-001-02	CAP LYTIC RADIALTAPE	22UF	10\%	C69 C71
220-002-02	CAP LYTIC RADIALTAPE	47UF	10\%	C 14 C37 C 89 C 93-94
220-005-02	CAP LYTIC RADIALTAPE	470UF	10\%	C 17 C 86
220-012-02	CAP LYTIC RADIALTAPE	4.7UF	10\%	C49C79
220-027-02	CAP LYTIC RADIALTAPE	10UF	10\%	C 1 C 3 C 5 C 23 C 67 C 80 C $92 \mathrm{C} 95-96 \mathrm{C} 100$
220-030-00	CAP LYTIC RADIAL	1000UF	10\%	C 91
220-036-00	CAP LYTIC RADIAL	10,000	F 20\%	C16C84

PART NO. DESC RIPTION
REFERENCE DESIGNATORS
224-004-00
224-006-00
224-007-00
224-009-00
224-010-00
224-011-00
224-014-00
224-015-00
224-016-00
224-017-00
224-019-00
224-020-00
300-003-00
301-009-00
301-013-00
302-003-00
304-001-00
310-023-02
310-024-00 310-025-00 310-028-00 310-029-00 310-032-02 310-035-00 310-036-00 310-037-00 311-001-00 311-002-00 311-005-00 311-006-00 320-004-00 329-012-00 400-060-00 400-131-00 400-132-00 400-163-00 400-165-00 400-166-00 400-171-00 400-173-00 400-178-00 410-004-00 410-005-00 450-094-00
500-025-00 500-026-00 500-033-02 550-231-00 700-023-00 700-028-00 700-058-03
705-001-00
705-016-00
706-044-00

CAP FILM SMT	. 0022	2.0\%	$\begin{aligned} & \text { C31 } \\ & \text { C11 C } 34 \text { C } 38 \text { C } 40 \end{aligned}$	
CAP FILM SMT	. 0047	2.0\%		
CAP FILM SMT	. 0068	2.0\%	C35C53	
CAP FILM SMT	. 01	2.0\%	C 20-21 C 25 C27 C29 C 36 C 51	
CAP FILM SMT	. 1	2.0\%	C39 C 56-60 C 62 C 104-109	
CAP FILM SMT	. 022	2.0\%	C12C55	
CAP FILM SMT	. 033	2.0\%	C28	
CAP FILM SMT	. 047	2.0\%	C77	
CAP FILM SMT	470pf	2.0\%	C52 C78	
CAP FILM SMT	. 0015	2.0\%	C $73-74$	
CAP FILM SMT	. 15	5\%	C61	
CAP FILM SMT	. 39	5\%	C63	
DIODE SIGNAL SMD	DL4148		D1-12 D20-21 D26-33 D37-41 D43-51D14-19 D24-25 D34-36	
DIODE POWER	1N4004			
DIODEBRIDGE	6A		BR1	
DIODETENER	1N4745		D13 D42	
DIODE LED TI	RED		D22-23	
TRANSISTOR NPN T\&R	2SC 236		Q14-15 Q28 Q 39	
TRANSISTOR PNP	2 SB817		Q7 Q35	
TRANSISTOR NPN	2SD104		Q5 Q37	
TRANSISTOR PNP	2SB940		Q9 Q 30 Q32	
TRANSISTOR NPN	2SD126		Q1-2 Q41	
TRANSISTOR PNP T\&R	2SA 101		Q16-17 Q27 Q 38	
TRANSISTOR PNP	2SA147		Q3 Q42	
TRANSISTO R NPN	2SC 378		Q10 Q33	
TRANSISTOR NPN	MJ E340		Q6Q36	
X-SISTOR NPN SMD	IMBT4401		Q19-20 Q43	
X-SISTOR PNP SMD	IMBT4403		Q21-23	
X-SISTOR NPN SMD	IMBTA0		Q8 Q11-12 Q 24 Q29 Q31 Q34	
X-SISTO R PNP SMD	IMBTA5		Q4 Q13 Q18 Q 25-26 Q40	
I.C. LINEAR SMD	NJ M 456		U1-14	
OPTO-ISOLATOR,LED/CDS	VTL5C 10		DR1	
FUSECLIP PCMT			Z Z3	
CON XLRPC MTG HORIZFMLSML			$J 3$	
CONNECTOR, IEC, RIG HTANGLE,			J 10 PC MT	
HDR, VERT, 4P, .165X2, M,			J5 W/PEGS	
HDR, VERT, 5P, .165X1, M,			J4 W/PEGS	
CONNECTOR, STEREO, J ACK 1/4"			J2 HORIZSUM	
CONN, HDR, 2-PIN, UN-SHROUDED			J1J6J12 0.100	
CONN QUICKDISC . 250			J 8-9 W/STABLE-LOK TABS	
CONNECTOR,STR,4P,.098 X 1,SHRD			j7J11	
SIL PAD, TO-126			Z12-13Z14-17(FOR SMAL(FOR LARGE TRANSISTORS)	
SIL PAD, TO-220				
PCB, MONITOR			Z14-17 (FOR LARGE TRANSISTORS)	
SWITCH, SUDE, 2P3T			SW2-5	
THERMOSTAT	67F070		TH1	
SWITCH, TACT6MM SQR 260GF	SPST		SW1	
HEATSINK BRACKET			Z4-5	
SCREW, PHP, BLK, 6-32X1/2			Z30 59	(FORIEC SOCKET)
SCREW, PHP, BLK, 6-32X1/4 SEMS			Z6-7 Z0-11	(MOUNTNG BOARD)
SCREW, SKT HD, 4-40X5/8			Z8-9 乙18-28	(FOR TRANSISTORS)
NUT, KEP, 6-32			Z60-61	(FORIEC SOCKET)
NUT, 4-40			Z31-38 743	99 (FOR TRANSISTORS)
SPACER, LED . 440			Z44-45	(FORLED)

PART NO. DESC RIPTION
REFERENCE DESIGNATORS

710-020-00
710-022-00
730-003-00
730-025-00
510-025-00
510-026-00
510-029-00
780-043-00
712-038-00
400-135-00
400-164-00
400-210-00
WASHER, COMPRESSION
Z46-58
(FOR TRANSISTORS)
Z62-74
(FOR TRANSISTORS)

FUSES

IC and Transistor charts
STYLE REF DESIG.

nar crillo HR824 SERVICE MANUAL

	REF DESIG.	PART NUMBER	DESCRIPTION	TYPE
	Q14,15,28,39	$310-023-02$	2 QC2362K	NPN
	Q16,17,27,38	$310-032-02$	2 SA1016K	PNP

